Antennas Tutorial

EEL 5432 Satellite Remote Sensing Lecture -3a

Flux Calculations - Isotropic Transmit Antenna

Flux Calculations - Transmit Antenna with Gain

The antenna gain pattern redirects the radiation in a preferred Direction, thereby increasing the radiated flux density by the antenna gain G_t (power ratio).

Antenna Gain Definition

• Peak gain is the max value of the antenna radiation pattern (power ratio).

 $G_{pk} = (max flux density)/(isotropic flux density)$

The direction of the max gain is known as the antenna boresight.

Friis Transmission Formula - Isotropic Source

Friis Transmission Formula - Directive Source

Relationship between Antenna Aperture and Gain

Antenna directive pattern

$$G_r = \frac{4\pi A_e}{\lambda^2}$$
, power ratio

Idealized Received Power - no system losses

$$P_{r} = P_{t} * G_{t} * G_{r} \left[\frac{1}{4\pi \left(\frac{R}{\lambda} \right)} \right]^{2}$$

Power Received = EIRP * Recv Ant Gain * Path Loss

EIRP = Effective Isotropic Radiated Power = $P_t * G_t$

Path Loss =
$$\begin{bmatrix} 1 \\ \frac{1}{4\pi (R_{\lambda})} \end{bmatrix}^2$$

Radiometer Antenna and Power Measurements

Radiometer Antenna Noise

Recv Pwr = Sur Emission * Isotropic Loss * A_e

Recv Pwr = Sur Emission * Isotropic Loss * A_e

- Surface Emission
 - Blackbody emission = $(4/\lambda)^2 \text{ kT}$, W/m²/Hz
 - Ant. IFOV area = $\pi R^2 \beta^2 / 4$, m²
- Isotropic Loss
 - = $1/(4 \pi R^2)$, m⁻²
- Antenna Effective Aperture

•
$$A_e = \lambda^2 \ / \ \beta^2$$
 , m^2

$P_r = kT$, W/Hz

If the receiver bandwidth = B, then

$$P_r = kTB$$
, W

Radiometric Received Power

- Pr = kTB
 - K = Boltzmann's constant = 1.38 e -23
 - T = radiometric brightness temperature

 $= \varepsilon T_{phys} = (emissivity * physical temperature)$

- Receiver bandwidth, Hz
- The received power is independent of the antenna gain and is independent of the range to the surface
- The surface area from which emission is captured is the antenna IFOV
 - IFOV depends on both the range and the antenna gain (beamwidth)

Antenna Radiometric "Noise" Temperature

- All bodies above absolute zero degrees (0 Kelvin) will emit non-coherent electromagnetic energy continuously at frequencies from RF to Light.
- Antennas viewing natural surfaces will receive this "black-body emission"
 - In the RF & microwave freq region, the emitted power = Boltzmann's constant * noise temp. * bandwidth
- We define the noise temperature $(T_{antenna})$ as:

 T_{ant}

surface emission captured by antenna
Boltzman's constant * receiver bandwidth

Antenna Noise Temperature, T_{ant}

$$T_{ant} = T_{ap} * (l_{ant}) + (1 - l_{ant}) * T_{phy}$$

 T_{phy} = antenna physical temperature, Kelvin L_{ant} = antenna loss (gain < 1), power ratio